Antiderivative
F(x) otherwise function to derivative function
If y’(x) = f(x) => y’(x) is F(x)
Indefinite integral
∫ f(x)△x = F(x)+C
*C - random constant
*△x increment
Properties
∫ k*f(x)△x = k*∫ f(x)△x
∫ (f(x) +/- g(x))△x = ∫ f(x)△x +/- ∫ g(x)△x
Integral sum
∑[i=1,n] f(s) △x
*△x = x(i) - x(i-1)
*∑ - sum between
Definite integral
S = lim( △x->0 ) ∑[i=1,n] f(s) △x = ∫ [a,b] f(x)△x
*as we see geometrical understanding of definete integral is area under the plot
Properties
∫ [a,a] f(x)△x = 0
∫ [a,a] f(x)△x = - ∫ [a,a] f(x)△x
∫ [a,c] f(x)△x = ∫ [a,b] f(x)△x + ∫ [b,c] f(x)△x
∫ [a,b] (f(x) +/- g(x))△x = ∫ [a,b] f(x)△x +/- ∫ [a,b] g(x)△x
∫ [a,c] k*f(x)△x = k*∫ [a,c] f(x)△x
If f(x)<>=g(x) then ∫ [a,b] f(x)△x <>= ∫ [a,b] g(x)△x
No comments:
Post a Comment